靠讲台最近的加拿大代表团用的是华人译员。那译员灵机一动,全部换成国际象棋术语来翻译。当然是硬凑加胡编,代表们听得频频点头。图海川也听见了,冲他伸个大拇指。
“会下围棋的请举下手?”
不超过五十人。日本和韩国代表几乎是全体。
“会下国际象棋的请举手?”
举手起码多了五倍。
图海川想了想说:“那也不能将就你们。这个问题,围棋比象棋本质得多,因为它几乎没有人为规则。非得用它才能讲清楚。”
下面响起零星的嘘声。图海川讪笑着,跷起二郎腿喝水。
张翰一看他那满不在乎的屌样,斜靠椅背放松的身体,就知道“泥巴时刻”来了——就是朱越在泥巴里面做爱的状态。他手心顿时涌出一把汗。
「–」
“当然是因为我们太低能。”
图海川用空瓶子指着自己的脑袋:“这东西功率不到100瓦,信息传输速度不到每秒100米。阿尔法狗下一盘比赛电费都要3000美元,传输速度是光速。我们发明了这个游戏,一开始和狗的玩法是一样的——本来就该这么玩嘛。然而只要稍稍入门,计算量上去了,我们的脑子就不够用了。要想玩下去,那就只能猛烈削减计算量。
“怎么削减呢?抽象,分类,一层又一层创造新概念,每个概念都把概率计算模糊化,把纯粹的逻辑和计算问题变成教条、经验和价值观。我们把无数种估值计算抽象成‘实地’和‘外势’,把无数种小局面分类成‘好形’和‘恶形’。阿尔法狗亿万次推演的得出的下一手,我们用几个字的模糊教条代替,比如‘逢危需弃’。我们用‘美感’‘虚实’这种非逻辑语言描述围棋,因为我们说不清楚、算不过来。这些低能耗工具真的非常管用,李世石还赢过狗一盘!
2016.3.13,人脑智能在棋盘上最后的辉煌:78手挖制胜。这盘之后阿尔法狗再无败绩。“鬼魅”“凌厉”“天外飞仙”是当时其他人类对白78的描述。78手实际上是误算,然而引发了ai的bug
“这一套玩法听起来很矬。下棋我们是永远下不过ai了。但是阿尔法狗只会下棋,其它什么也不会。东亚人说围棋是人类智能的桂冠,这是自吹自擂。下围棋是个非常简单的智能行为,因为它规则非常简单,因素非常单纯。我们觉得它难是因为19路棋盘太大了,纯属自虐设计。从13路涨到19路,计算量指数暴增,我们又非要玩,就必须搞出这么多复杂的概念来简化它。而狗,因为有一把蛮力,简简单单就把它玩好了。从信息处理和概率学的角度来看,医生诊断病人,或者纯粹靠观察判断老婆有没有偷情,都比下围棋复杂亿万倍。这些事情,我们很多人都能做得很好——”
下面哄堂大笑,都在互相问图海川有没有老婆。
“——但是阿尔法狗就不行。绝对不行。作为一个ai,它非常原始。而我们的大脑是一部通用智能机器,它用它那一套工具和架构,可以对付任何事,解决任何智能问题。我看见同行们在打哈欠了。因为我刚才讲的都是ai研究中的入门常识。为你们的领导着想,请再忍耐我一会儿。
“谁都知道大脑是唯一的通用智能机器。那我们为什么不造个人工大脑呢?这东西可不好造。因为它慢,为了解决问题就进化得极其复杂。上个世纪后半段,有些ai研究者真的尝试过。一个小程序或者一个硬件单元代表一个神经元,让我们弄一大堆胡乱连起来,就叫神经网络!用海量数据训练它,看看它会不会变成大脑?
“当然没有。这些先辈,在业界叫做连接主义者。他们几十年没做出什么成绩,在投资者当中名声臭了。后辈为了出成绩赶紧换方向,ai技术的玩法从连接变成了概率。阿尔法狗就是概率学ai的平型关战役,虽然体量很小没搞定多少鬼子,却吹响了二十一世纪人工智能大进军的号角。因为它证明:我们只要操起这个武器去打,总有能打赢的时候。”
日本代表们听译员解释之后都在笑。
“为什么我会坐下来,从头考虑这些常识问题?因为我感觉概率学已经玩不动了。我的偶像杨立昆,在2017年就说他已经准备好放弃概率学。那时我还是个无知少年,觉得他在无病呻吟。到2029年,我比他更绝望。不是说概率学ai不行,它很厉害。谷歌透镜、人脸识别、自动驾驶、智能辅助设计、诊断系统、智能测谎、无人机刺杀、智能战略防御,不久之前你们还用得很开心。这些都是概率学ai的成果。当代流行的ai中,最差劲的是智能教育系统,教书的ai假装教,上课的学生假装学。最可笑的是ai明星,猴子穿个龙袍就敢去演皇帝。这两个失败都情有可原:在我看来,当个好老师是人类最高智力成就,而表演别人是人类最狡诈的智能行为。这些短板还不算严重。真正严重的是:概率学ai看来永远达不到我的目标——通用人工智能。(注:杨立昆,即yann lecun,美国人工智能学家,深度学习的创始人之一,被誉为“卷积网络之父”。)
“于是我反复思考那个唯一的通用智能,越想越气愤。它凭什么那么简单却那么厉害啊?”
国务卿不举手直接站起来:“简单?你不是刚说它极其复杂、无法制造吗?”
“它长得极其复杂,运作的原理却非常简单。跟概率学ai正好相反。我们用概率学ai解决一个问题,构造框架简单明了,但具体实现要做非常复杂的设计、计算和测试。其中有些部分纯粹靠反复碰运气,碰到正确答案为止。为什么正确我们都不知道。而且无法移植,能解决人脸识别的ai设计遇到翻译问题马上废掉,几乎是从头做起。也就是说,我们没有一个关于智能的整体解决方案,都是具体问题各自为战。大脑是一个明摆着的整体解决方案。大脑神经元不懂任何算术,更别说概率学,执行的操作就那么两下。组成一个庞大的网络却能解决一切问题。”
“哦?我听过的科学家,都说大脑的运作原理无比复杂。你却说简单?那么简单的话,能分享一下吗?”
“刚才我讲人怎么下棋的时候,已经说过了:记录,模式抽象,分类,层层创造新概念,把记下的模式用来预测。完了。”
国务卿一时摸不着头脑。图海川挥手让他坐下。戈德曼坐在旁边不动如山,根本当他不存在。
“同行们注意!下面是你们不知道的,或者不愿意承认的。连接主义者很不幸。他们的直觉其实是对的,但生活在上个世纪,生物学和认知神经学都太落后,根本不懂大脑。我们先来看看大脑到底怎么工作。
“我们的计算机程序,数据结构非常复杂,大学时数据结构基础就要学一年。谷歌推出的ai数据标准,光是‘张量’一个结构就能把有些专业人士打晕。而大脑呢?它只传输一种信号:神经电位冲动。它只存储一种数据:组合序列。
“我们的感官接受很多种信号:视觉接受电磁波,听觉接受声波,还有压力、惯性方向、热量转移速率、无数种化学分子,气溶和水溶分子接收体系还不一样……大脑可不像计算机,为每种信号规定一种格式。大脑在神经系统的边界层就把它们全都转换成神经元冲动,在内部全都存储为组合序列。所谓冲动,就是一个神经元以电位形式兴奋起来,并把兴奋传给连着它的另一个神经元。每个冲动本身都是一模一样的,区别只在于从谁传给谁。所谓组合,就是哪些神经元一起兴奋。所谓序列,就是不同组合兴奋的先后顺序。这就是大脑唯一的数据形式,大脑用它解决所有问题。它完全依托于神经元之间的网络存在,没有连接就没有数据。所有写过程序的人,请你们仔细品品这种数据结构。多简洁,多优美!
“我们每时每刻都在接受海量的感官信息。视网膜感光细胞就有几百万个,看电影时每秒激励10次左右,已经赶不上电影每秒几十帧的刷新率。虽然大脑有上千亿个神经元,也不可能存下这么多组合序列。这跟下围棋不可能计算穷尽是一个道理。于是大脑使出第二招:模式抽象。
“假设你在看书。印刷文字反射的光线投在你的视网膜上,感光细胞开始一群群激励,向大脑中连着的神经元发送冲动。有些冲动的组合序列代表受激励的感光细胞直线排列,大脑把它抽象为“直线”,在上一层用一个或者几个细胞的组合代表。同样的方法也产生“弧线”这样的抽象。几个‘直线’和‘弧线’的特定序列组合,在更上一层抽象为字母h。几个不同字母的组合序列,在更上一层抽象为单词horse。记录horse的组合序列,会跟另外一些早已存在的序列连接起来——比如你听见这个单词的读音产生的序列,那是耳朵接收音频转换生成的序列。
“所谓连接,就是共同激励,你一兴奋我就兴奋。英国和美国口音horse的念法不同,男人和女人的声音频率也差得远。但是没有关系,它们跟视觉产生的单词序列都连在一起,还跟你曾经看见一匹马的视觉图像序列连在一起。除了英文你还会说中文。那么,ma的发音跟horse天差地远,在你大脑中两个代表不同音频的序列仍然连在一起。这几个序列彼此全部连通,那么就会再次向上层细胞抽象。在这一层,‘马’已经甩掉了黑毛还是白毛、听觉还是视觉、文字还是图像、中文还是英文这些不必要信息,成为一个真正的概念,用一个特定神经元组合记下来。我们可以叫它马细胞。那么以后你不管通过哪种感官接收到关于‘马’的信息,甚至闭上眼自己想一下,马细胞都会兴奋起来。”
“它还会跟大脑中许许多多其它概念连起来。比如另有一个‘牛’的概念。这两个东西的组合序列会很相似,因为抽象出它们的下层序列和关联概念,很多都是重合的。比如四条腿,比如都能被人养。大脑会发觉这两个组合序列相似,虽然不清楚该叫什么,先连起来再说。以后你再听到‘家畜’这个说法,更高一层的概念名字就取好了,新的存储组合也生成了,以后认识的猪和羊都连到这里。这就是大脑的第三招:分类。这种层层抽象还会向上延伸,比如生成‘动物’的概念。还会跟其它概念产生横向连接,比如‘马’可能连接到‘老婆’。为什么会这样连接?因为‘马’这个概念的下层包括一张抽象的、长长的脸。你的大脑中“老婆”这个概念已经连到了这里,双方共用这个下层概念神经元组合,所以连上了。连上之后,别人小声说‘母马’,你就会很敏感,觉得是在骂你老婆。”
听懂的人都听得痴了。没听懂的又开始推测图海川的婚姻问题。
“组合序列记录、模式抽象、分类。大脑就靠这三招,在内部建立了一个世界模型。如果这个模型是一座大厦,我刚才描述的局部就比一块砖还小。然而,整个大厦都是用这种机制建成的。这个世界模型的物理位置在大脑皮层,仅仅用了六层细胞,大概一千亿个。我们遇到的每一个需要智能解决的问题,大脑都在建好的世界模型中推演,就像棋手先推演下面几步,再落子。这叫预测。或者根据新的信息,先在世界模型中增添新组件,和旧组件建立连接,再来推演。这就叫学习,或者叫记忆加预测。
“做ai的人都有共识:智能的本质就是记忆加预测。我们头骨里面这个记忆-预测模型,有些人大,有些人小,所有人都有不同程度的歪曲。但大脑解决所有问题都是把它放在整个世界模型中运行。这样来看大脑,它不是通用智能才怪!”
没有一个人说话,没有一个人的眼睛离开图海川的脸。只有一些小国代表受不了自己的译员了,用耳机连上公共翻译。
“一个小巧、简洁、通用的世界模型。听起来就能把人迷死。想制造大脑的人远远不止我一个,古往今来太多了。为什么他们都失败了?我们再回头来看看连接主义者,在我之前最近的尝试。”
“他们的直觉其实是对的。分布式网络,单元最简行为,海量输入数据施加压力,让网络自己学习、生长、进化。这些都是构造大脑的基本原则。世上最复杂的东西都是长出来的,而不是设计出来的。也不要以为‘连接主义’在ai界成了贬义词,它就死掉了。当今主流的ai技术:深度学习或者机器学习,它们的内核还是这些原则,只是设计使用的数学工具先进了无数倍,再加上不声张而已。你最多能听见他们说‘黑箱卷积’或者‘玄学调参’。
“既然原理相同,那为什么从前的连接主义者尸横遍野,当代偷师了连接主义的概率学ai仍然看不到大脑的尾灯?原因只有一个:大脑比它们先出发——大概五亿年。
“大脑的世界模型不是从你出生开始构建的。只有最顶层很少的一部分才跟出生后的学习有关。下面占多数的底层,组合序列早已建好,预测模型早已完美,数据庞大到不可思议,连接复杂到不可思议,都是你继承的遗产。这些部分很多跟你的身体有关,更多的与外部世界有关。随便挑出一个局部,都能让顶尖的概率学ai汗颜。
“我们挑个简单的:皮肤上的压力感受器。你刚出生,它就对外部世界无师自通。给它个尖锐而快速的压力——痛觉,模型预测是荆棘或者爪牙,对策是不经过意识反应直接缩开,越快越好。给它个点状分散、轻微而移动的压力——痒觉,模型预测是昆虫或者腐蚀性物质,对策是没手的去树上蹭,有手就用手挠。给它个宽广、稳定而柔和的压力,模型预测是爱抚,对策是通知某个腺体分泌神经递质,神经递质促进一大片预先编好的组合序列兴奋起来,让你觉得爽,还会启动一整套社交行为。比如四脚朝天亮出肚皮,或者放开奶头笑一下,或者呻吟两声鼓励他继续。”
听众们一直屏息静气,这时突然爆出一片喝彩与掌声。图海川绝望地想:幸亏加的料够多。
“这么庞大复杂的底层模型,当然也是一点点学习外部世界,学出来的。不是我们自己,是五亿年间每一个直系祖先。学习方法是世界让神经建模不行的早点去死,或者终身破不了处,那些就不是我们的祖先。建模够快、够准确的才有资格做祖先。它们把整体建模的菜谱刻在基因组当中传给我们——菜谱,不是蓝图!也就是说,每个人头颅中的世界模型刚一出生,对世界的学习就已经持续五亿年。所以它才会长得那么复杂。
“而连接主义者呢?他们输在起跑线上。人工神经网络从一无所有的白纸开始。不仅节点和连接数量没法跟大脑比,探索阶段的学习数据摄入量,几张打印纸就可以抄完。我说过,他们的原则没有问题。也许让他们搞上一千年,人工神经网络能赶上大脑的水平。毕竟人类操纵进化比自然快得多,看看狗就知道——真正的狗,不是阿尔法狗。但是现代社会不可能等你一千年。阿里集团放手让我玩了十年,已经是理解与慷慨的巅峰了。”
孤零零一只手举起。这是一位小国代表。
“图博士,您的智能学讲座精彩绝伦。但是为国际社会的团结考虑,能否请你不要把进化论这样充满争议的学说带进来呢?我相信我们今天是来达成共识的,不是来争吵的。”
“谢谢您的夸奖,主教大人。这次会议开三天,就算今天我们不争吵,明天后天也一定会。还有,如果您无法接受任何一种包含进化论的表述,那么再听我讲半小时,您会发现我们全体坐上了高速列车,直奔地狱。”
主教似乎被吓住了。他刚坐下,英国技术代表杰米斯爵士又举起了手。
“非常感谢你给同行上的生物课。请问你是生物学家吗?或者神经学家?或者有医科学位?”